TY - JOUR
T1 - Withdrawal From Cocaine Self-administration Alters the Regulation of Protein Translation in the Nucleus Accumbens
AU - Stefanik, Michael T.
AU - Milovanovic, Mike
AU - Werner, Craig T.
AU - Spainhour, John C.G.
AU - Wolf, Marina E.
N1 - Funding Information:
This research was supported by United States Public Health Service Grant DA015835 (to MEW), postdoctoral National Research Service Award DA040414 (to MTS), and predoctoral National Research Service Award DA036950 (to CTW).
Publisher Copyright:
© 2018 Society of Biological Psychiatry
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Background: Cue-induced cocaine craving incubates during abstinence from cocaine self-administration. Expression of incubation ultimately depends on elevation of homomeric GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in the nucleus accumbens (NAc). This adaptation requires ongoing protein translation for its maintenance. Aberrant translation is implicated in central nervous system diseases, but nothing is known about glutamatergic regulation of translation in the drug-naïve NAc or after incubation. Methods: NAc tissue was obtained from drug-naïve rats and from rats after 1 or >40 days of abstinence from extended-access cocaine or saline self-administration. Newly translated proteins were labeled using 35S-Met/Cys or puromycin. We compared basal overall translation and its regulation by metabotropic glutamate receptor 1 (mGlu1), mGlu5, and N-methyl-D-aspartate receptors (NMDARs) in drug-naïve, saline control, and cocaine rats, and we compared GluA1 and GluA2 translation by immunoprecipitating puromycin-labeled proteins. Results: In all groups, overall translation was unaltered by mGlu1 blockade (LY367385) but increased by mGlu5 blockade (MTEP). NMDAR blockade (AVP) increased overall translation in drug-naïve and saline control rats but not in cocaine/late withdrawal rats. Cocaine/late withdrawal rats exhibited greater translation of GluA1 (but not GluA2), which was not further affected by NMDAR blockade. Conclusions: Our results suggest that increased GluA1 translation contributes to the elevated homomeric GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor levels in the NAc that mediate incubation. Additional contributions to incubation-related plasticity may result from loss of the braking influence on translation normally exerted by NMDARs. Apart from elucidating incubation-related adaptations, we found a suppressive effect of mGlu5 on NAc translation regardless of drug exposure, which is opposite to results obtained in the hippocampus and points to heterogeneity of translational regulation between brain regions.
AB - Background: Cue-induced cocaine craving incubates during abstinence from cocaine self-administration. Expression of incubation ultimately depends on elevation of homomeric GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in the nucleus accumbens (NAc). This adaptation requires ongoing protein translation for its maintenance. Aberrant translation is implicated in central nervous system diseases, but nothing is known about glutamatergic regulation of translation in the drug-naïve NAc or after incubation. Methods: NAc tissue was obtained from drug-naïve rats and from rats after 1 or >40 days of abstinence from extended-access cocaine or saline self-administration. Newly translated proteins were labeled using 35S-Met/Cys or puromycin. We compared basal overall translation and its regulation by metabotropic glutamate receptor 1 (mGlu1), mGlu5, and N-methyl-D-aspartate receptors (NMDARs) in drug-naïve, saline control, and cocaine rats, and we compared GluA1 and GluA2 translation by immunoprecipitating puromycin-labeled proteins. Results: In all groups, overall translation was unaltered by mGlu1 blockade (LY367385) but increased by mGlu5 blockade (MTEP). NMDAR blockade (AVP) increased overall translation in drug-naïve and saline control rats but not in cocaine/late withdrawal rats. Cocaine/late withdrawal rats exhibited greater translation of GluA1 (but not GluA2), which was not further affected by NMDAR blockade. Conclusions: Our results suggest that increased GluA1 translation contributes to the elevated homomeric GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor levels in the NAc that mediate incubation. Additional contributions to incubation-related plasticity may result from loss of the braking influence on translation normally exerted by NMDARs. Apart from elucidating incubation-related adaptations, we found a suppressive effect of mGlu5 on NAc translation regardless of drug exposure, which is opposite to results obtained in the hippocampus and points to heterogeneity of translational regulation between brain regions.
KW - AMPA receptor
KW - Incubation of cocaine craving
KW - Metabolic labeling
KW - Nucleus accumbens
KW - Protein translation
KW - Puromycin
UR - http://www.scopus.com/inward/record.url?scp=85044732741&partnerID=8YFLogxK
U2 - 10.1016/j.biopsych.2018.02.012
DO - 10.1016/j.biopsych.2018.02.012
M3 - Article
C2 - 29622268
AN - SCOPUS:85044732741
SN - 0006-3223
VL - 84
SP - 223
EP - 232
JO - Biological Psychiatry
JF - Biological Psychiatry
IS - 3
ER -