TY - JOUR
T1 - Variability of cell surface hydrophobicity among Pasteurella multocida somatic serotype and Actinobacillus lignieresii strains
AU - Darnell, K. R.
AU - Hart, M. E.
AU - Champlin, F. R.
PY - 1987
Y1 - 1987
N2 - Pasteurella multocida possesses a characteristically gram-negative ultrastructure, yet its inability to grow in the presence of hydrophobic compounds and the general penicillin susceptibility of genera making up the family Pasteurellaceae suggest a cell envelope having atypical permeability properties. The cell surface hydrophobicity properties of strains representing 15 of the 16 somatic serotypes of P. multocida and three strains of Actinobacillus lignieresii were assessed with hydrocarbon adherence and hydrophobic interaction chromatographic assays. These methods revealed surface hydrophobicity to vary dramatically among strains in both species. No direct correlation was observed with species, growth rate, or susceptibility to the antibiotics oxytetracycline (polar), polymyxin B (amphiphilic), or novobiocin (nonpolar) as measured with MIC determinations. All strains were susceptible to the antibiotics, although A. lignieresii was significantly less susceptible than P. multocida to novobiocin. These data suggest that cell surface hydrophobicity in P. multocida may be influenced by the type of lipopolysaccharide present but is not directly related to permeability of the antibiotics examined. The wide diversity of hydrophobic properties exhibited by strains of both P. multocida and A. lignieresii precludes the use of this parameter as a taxonomic aid.
AB - Pasteurella multocida possesses a characteristically gram-negative ultrastructure, yet its inability to grow in the presence of hydrophobic compounds and the general penicillin susceptibility of genera making up the family Pasteurellaceae suggest a cell envelope having atypical permeability properties. The cell surface hydrophobicity properties of strains representing 15 of the 16 somatic serotypes of P. multocida and three strains of Actinobacillus lignieresii were assessed with hydrocarbon adherence and hydrophobic interaction chromatographic assays. These methods revealed surface hydrophobicity to vary dramatically among strains in both species. No direct correlation was observed with species, growth rate, or susceptibility to the antibiotics oxytetracycline (polar), polymyxin B (amphiphilic), or novobiocin (nonpolar) as measured with MIC determinations. All strains were susceptible to the antibiotics, although A. lignieresii was significantly less susceptible than P. multocida to novobiocin. These data suggest that cell surface hydrophobicity in P. multocida may be influenced by the type of lipopolysaccharide present but is not directly related to permeability of the antibiotics examined. The wide diversity of hydrophobic properties exhibited by strains of both P. multocida and A. lignieresii precludes the use of this parameter as a taxonomic aid.
UR - http://www.scopus.com/inward/record.url?scp=0023270069&partnerID=8YFLogxK
U2 - 10.1128/jcm.25.1.67-71.1987
DO - 10.1128/jcm.25.1.67-71.1987
M3 - Article
C2 - 3793876
AN - SCOPUS:0023270069
SN - 0095-1137
VL - 25
SP - 67
EP - 71
JO - Journal of Clinical Microbiology
JF - Journal of Clinical Microbiology
IS - 1
ER -