Abstract
Original language | English |
---|---|
Pages (from-to) | 7693-7704 |
Number of pages | 12 |
Journal | ACS Omega |
Volume | 5 |
Issue number | 13 |
DOIs | |
State | Published - 7 Apr 2020 |
Fingerprint
Dive into the research topics of 'U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: ACS Omega, Vol. 5, No. 13, 07.04.2020, p. 7693-7704.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics
AU - Rogers, D.A.
AU - Hopkins, M.D.
AU - Rajagopal, N.
AU - Varshney, D.
AU - Howard, H.A.
AU - Leblanc, G.
AU - Lamar, A.A.
N1 - Cited By :3 Export Date: 14 June 2022 Correspondence Address: Leblanc, G.; Department of Chemistry and Biochemistry, United States; email: [email protected] Funding details: University of Tulsa, TU Funding details: Oklahoma Center for the Advancement of Science and Technology, OCAST, HR18-013 Funding text 1: The research results discussed in this publication were made possible in part by funding from the Oklahoma Center for the Advancement of Science and Technology (OCAST) Project Number HR18-013. In addition, we are grateful for financial support provided by The University of Tulsa (TU) lab start-up contribution, as well as the Tulsa Undergraduate Research Challenge (TURC) and Chemistry Summer Undergraduate Research Program (CSURP) for student support. References: Dalko, P.I., Moisan, L., In the golden age of organocatalysis (2004) Angew. Chem., Int. Ed., 43, pp. 5138-5175; Bertelsen, S., Jørgensen, K.A., Organocatalysis-After the gold rush (2009) Chem. Soc. Rev, 38, pp. 2178-2189; Alemán, J., Cabrera, S., Applications of asymmetric organocatalysis in medicinal chemistry (2013) Chem. Soc. Rev, 42, pp. 774-793; Constable, D.J.C., Dunn, P.J., Hayler, J.D., Humphrey, G.R., Leazer, J.L., Linderman, R.J., Lorenz, K., Zhang, T.Y., Key green chemistry research areas-A perspective from pharmaceutical manufacturers (2007) Green Chem., 9, pp. 411-420; Pellissier, H., Asymmetric organocatalysis (2007) Tetrahedron, 63, pp. 9267-9331; Melchiorre, P., Marigo, M., Carlone, A., Bartoli, G., Asymmetric aminocatalysis-Gold rush in organic chemistry (2008) Angew. Chem., Int. Ed., 47, pp. 6138-6171; Brown, D.G., Boström, J., Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? (2016) J. Med. Chem., 59, pp. 4443-4458; Wilcken, R., Zimmermann, M.O., Lange, A., Joerger, A.C., Boeckler, F.M., Principles and applications of halogen bonding in medicinal chemistry and chemical biology (2013) J. Med. Chem., 56, pp. 1363-1388; Cernak, T., Dykstra, K.D., Tyagarajan, S., Vachal, P., Krska, S.W., The medicinal chemist's toolbox for late stage functionalization of drug-like molecules (2016) Chem. Soc. Rev., 45, pp. 546-576; Petrone, D.A., Ye, J., Lautens, M., Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation (2016) Chem. Rev., 116, pp. 8003-8104; Zha, G.-F., Qin, H.-L., Kantchev, E.A.B., Ruthenium-catalyzed direct arylations with aryl chlorides (2016) Rsc Adv., 6, pp. 30875-30885; De La Mare, P.B.D., (1976) Electrophilic Halogenation: Reaction Pathways Involving Attack by Electrophilic Halogens on Unsaturated Compounds, , Cambridge University Press: London; New York; Rodriguez, R.A., Pan, C.M., Yabe, Y., Kawamata, Y., Eastgate, M.D., Baran, P.S., Palau'chlor: A practical and reactive chlorinating reagent (2014) J. Am. Chem. Soc., 136, pp. 6908-6911; Lu, Z., Li, Q., Tang, M., Jiang, P., Zheng, H., Yang, X., CFBSA: A novel and practical chlorinating reagent (2015) Chem. Commun., 51, pp. 14852-14855; Wang, M., Zhang, Y., Wang, T., Wang, C., Xue, D., Xiao, J., Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2-benziodoxol-3-one (2016) Org. Lett., 18, pp. 1976-1979; Ohkubo, K., Fujimoto, A., Fukuzumi, S., Aromatic Monochlorination Photosensitized by DDQ with Hydrogen Chloride under Visible-Light Irradiation (2016) Chem.-Asian J., 11, pp. 996-999; Hering, T., Mühldorf, B., Wolf, R., König, B., Halogenase-Inspired Oxidative Chlorination Using Flavin Photocatalysis (2016) Angew. Chem., Int. Ed., 55, pp. 5342-5345; Liu, X., Zhao, X., Liang, F., Ren, B., T-BuONa-mediated direct C-H halogenation of electron-deficient (hetero)arenes (2018) Org. Biomol. Chem., 16, pp. 886-890; Souza, S.P.L.D., Silva, J.F.M.D., Mattos, M.C.S.D., N-Chloro and N-bromosaccharins: Valuable reagents for halogenation of electron rich aromatics and cohalogenation of alkenes (2003) J. Braz. Chem. Soc., 14, pp. 832-835; Zhang, L., Hu, X., Room temperature C(sp2)-H oxidative chlorination via photoredox catalysis (2017) Chem. Sci., 8, pp. 7009-7013; Prakash, G.K.S., Mathew, T., Hoole, D., Esteves, P.M., Wang, Q., Rasul, G., Olah, G.A., N-Halosuccinimide/BF3-H2O, Efficient Electrophilic Halogenating Systems for Aromatics (2004) J. Am. Chem. Soc., 126, pp. 15770-15776; Mostafa, M.A.B., Bowley, R.M., Racys, D.T., Henry, M.C., Sutherland, A., Iron(III)-Catalyzed Chlorination of Activated Arenes (2017) J. Org. Chem., 82, pp. 7529-7537; Maddox, S.M., Nalbandian, C.J., Smith, D.E., Gustafson, J.L., A Practical Lewis Base Catalyzed Electrophilic Chlorination of Arenes and Heterocycles (2015) Org. Lett., 17, pp. 1042-1045; Maddox, S.M., Dinh, A.N., Armenta, F., Um, J., Gustafson, J.L., The Catalyst-Controlled Regiodivergent Chlorination of Phenols (2016) Org. Lett., 18, pp. 5476-5479; Maibunkaew, T., Thongsornkleeb, C., Tummatorn, J., Bunrit, A., Ruchirawat, S., Practical and Metal-Free Electrophilic Aromatic Halogenation by Interhalogen Compounds Generated in Situ from N-Halosuccinimide and Catalytic TMSCl (2014) Synlett, 25, pp. 1769-1775; Samanta, R.C., Yamamoto, H., Selective Halogenation Using an Aniline Catalyst (2015) Chem.-Eur. J., 21, pp. 11976-11979; Xiong, X., Yeung, Y.Y., Highly ortho-Selective Chlorination of Anilines Using a Secondary Ammonium Salt Organocatalyst (2016) Angew. Chem., Int. Ed., 55, pp. 16101-16105; Chen, J., Xiong, X., Chen, Z., Huang, J., Imidazolium Salt Catalyzed para-Selective Halogenation of Electron-Rich Arenes (2015) Synlett, 26, pp. 2831-2834; Hering, T., König, B., Photocatalytic activation of N-chloro compounds for the chlorination of arenes (2016) Tetrahedron, 72, pp. 7821-7825; Rogers, D.A., Bensalah, A.T., Espinosa, A.T., Hoerr, J.L., Refai, F.H., Pitzel, A.K., Alvarado, J.J., Lamar, A.A., Amplification of Trichloroisocyanuric Acid (TCCA) Reactivity for Chlorination of Arenes and Heteroarenes via Catalytic Organic Dye Activation (2019) Org. Lett., 21, pp. 4229-4233; Rogers, D.A., Gallegos, J.M., Hopkins, M.D., Lignieres, A.A., Pitzel, A.K., Lamar, A.A., Visible-light photocatalytic activation of N-chlorosuccinimide by organic dyes for the chlorination of arenes and heteroarenes (2019) Tetrahedron, 75, p. 130498; Rogers, D.A., Brown, R.G., Brandeburg, Z.C., Ko, E.Y., Hopkins, M.D., LeBlanc, G., Lamar, A.A., Organic Dye-Catalyzed, Visible-Light Photoredox Bromination of Arenes and Heteroarenes Using N-Bromosuccinimide (2018) Acs Omega, 3, pp. 12868-12877; Harp, B.P., Miranda-Bermudez, E., Barrows, J.N., Determination of seven certified color additives in food products using liquid chromatography (2013) J. Agric. Food Chem., 61, pp. 3726-3736; Yamjala, K., Nainar, M.S., Ramisetti, N.R., Methods for the analysis of azo dyes employed in food industry-A review (2016) Food Chem., 192, pp. 813-824; Yoshioka, N., Ichihashi, K., Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection (2008) Talanta, 74, pp. 1408-1413; Minioti, K.S., Sakellariou, C.F., Thomaidis, N.S., Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector (2007) Anal. Chim. Acta, 583, pp. 103-110; Shokrollahi, A., Roozestan, T., CPE-Scanometry as a new technique for the determination of dyes: Application for the determination of fast green FCF dye and comparison with spectrophotometric results (2013) Anal. Methods, 5, p. 4824; Mizutani, T., Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner (2009) J. Environ. Public Health., 2009, p. 9; Amin, K.A., Abdel Hameid, H.I.I., Abd Elsttar, A.H., Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats (2010) Food Chem. Toxicol., 48, pp. 2994-2999; Bastaki, M., Farrell, T., Bhusari, S., Bi, X., Scrafford, C., Estimated daily intake and safety of FD&C food-colour additives in the US population (2017) Food Addit. Contam., Part A, 34, pp. 891-904; Oplatowska-Stachowiak, M., Elliott, C.T., Food colors: Existing and emerging food safety concerns (2017) Crit. Rev. Food Sci. Nutr., 57, pp. 524-548; Yang, J., Liu, R., Lu, F., Xu, F., Zheng, J., Li, Z., Cui, W., Chen, X., Fast Green FCF Attenuates Lipopolysaccharide-Induced Depressive-Like Behavior and Downregulates TLR4/Myd88/NF-κB Signal Pathway in the Mouse Hippocampus (2019) Front. Pharmacol., 10, p. 501; Merinas-Amo, R., Martínez-Jurado, M., Jurado-Guëto, S., Alonso-Moraga, Á., Merinas-Amo, T., Biological Effects of Food Coloring in in Vivo and in Vitro Model Systems (2019) Foods, 8, p. 176; Nalliah, R.E., Oxone/Fe2+ Degradation of Food Dyes: Demonstration of Catalyst-Like Behavior and Kinetic Separation of Color (2015) J. Chem. Educ., 92, pp. 1681-1683; Tekin, G., Ersöz, G., Atalay, S., Visible light assisted Fenton oxidation of tartrazine using metal doped bismuth oxyhalides as novel photocatalysts (2018) J. Environ. Manage., 228, pp. 441-450; Sirés, I., Guivarch, E., Oturan, N., Oturan, M.A., Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode (2008) Chemosphere, 72, pp. 592-600; Gosetti, F., Gianotti, V., Angioi, S., Polati, S., Marengo, E., Gennaro, M.C., Oxidative degradation of food dye E133 Brilliant Blue FCF Liquid chromatography-electrospray mass spectrometry identification of the degradation pathway (2004) J. Chromatogr. A, 1054, pp. 379-387; Koli, P., Solar energy conversion and storage: Fast Green FCF-Fructose photogalvanic cell (2014) Appl. Energy, 118, pp. 231-237; Koli, P., Sharma, U., Energy conversion in electrolyte under artificial light: Fast Green FCF-Fructose-surfactant-small Pt electrode photogalvanic cell (2016) Appl. Sol. Energy, 52, pp. 76-83; Koli, P., Enhancing efficiency of Fast Green FCF-Fructose photogalvanic solar cell by using surfactant in natural sunlight (2018) Int. J. Ambient Energy, pp. 868-874; Ca¸ldiran, Z., Aydoǧan, S., Incekara, U., Schottky Diode Applications of the Fast Green FCF Organic Material and the Analyze of Solar Cell Characteristics (2016) J. Phys.: Conf. Ser., 707, p. 012052; Chen, S.M., Chen, J.Y., Thangamuthu, R., Electrochemical Preparation of Brilliant-Blue-Modified Poly(diallyldimethylammonium Chloride) and Nafion-Coated Glassy Carbon Electrodes and Their Electrocatalytic Behavior towards Oxygen and L-Cysteine (2008) Electroanalysis, 20, pp. 1565-1573; Uryu, Y., Uno, T., Itoh, T., Kubo, M., A ternary composite based on polystyrene sulphonic acid, organic dye and hygroscopic inorganic salt for cobalt-free humidity indicating agent (2016) Mater. Res. Innovations, 21, pp. 331-335; Genwa, K.R., Shraddha, Singh, S.P., Singh, K., Role of dyes as energy materials in photogalvanic conversion of solar energy (2017) J. Indian Chem. Soc., 94, pp. 527-533; Koli, P., Sharma, U., Photochemical solar power and storage through photogalvanic cells: Comparing performance of dye materials (2017) Energy Sources, Part A, 39, pp. 555-561; Welsch, M.E., Snyder, S.A., Stockwell, B.R., Privileged scaffolds for library design and drug discovery (2010) Curr. Opin. Chem. Biol., 14, pp. 347-361; Cismesia, M.A., Yoon, T.P., Characterizing Chain Processes in Visible Light Photoredox Catalysis (2015) Chem. Sci., 6, pp. 5426-5434; Yin, Q., Wang, S.G., Liang, X.W., Gao, D.W., Zheng, J., You, S.L., Organocatalytic asymmetric chlorinative dearomatization of naphthols (2015) Chem. Sci., 6, pp. 4179-4183; Zhang, Z., Sun, Q., Xu, D., Xia, C., Sun, W., Direct halogenative dearomatization of 2-naphthols by NXS (X = Cl, Br) in water (2016) Green Chem., 18, pp. 5485-5492; Uyanik, M., Sahara, N., Ishihara, K., Regioselective Oxidative Chlorination of Arenols Using NaCl and Oxone (2019) Eur. J. Org. Chem., 2019, pp. 27-31; Roche, S.P., Youte Tendoung, J.-J., Tréguier, B., Advances in dearomatization strategies of indoles (2015) Tetrahedron, 71, pp. 3549-3591; Wu, J., Dou, Y., Guillot, R., Kouklovsky, C., Vincent, G., Electrochemical Dearomative 2,3-Difunctionalization of Indoles (2019) J. Am. Chem. Soc., 141, pp. 2832-2837; Shukla, G., Alam, T., Srivastava, H.K., Kumar, R., Patel, B.K., Visible-Light-Mediated Ir(III)-Catalyzed Concomitant C3 Oxidation and C2 Amination of Indoles (2019) Org. Lett., 21, pp. 3543-3547; Xu, M.M., Cao, W.B., Ding, R., Li, H.Y., Xu, X.P., Ji, S.J., Dearomatization of Indoles via Azido Radical Addition and Dioxygen Trapping to Access 2-Azidoindolin-3-ols (2019) Org. Lett., 21, pp. 6217-6220; Shukla, G., Dahiya, A., Alam, T., Patel, B.K., Visible Light-Mediated C2-Quaternarization of N-Alkyl Indoles through Oxidative Dearomatization using Ir(III) Catalyst (2019) Asian J. Org. Chem., 8, pp. 2243-2248; Chebotarev, A.N., Bevziuk, K.V., Snigur, D.V., Bazel, Y.R., The brilliant blue FCF ion-molecular forms in solutions according to the spectrophotometry data (2017) Russ. J. Phys. Chem. A, 91, pp. 1907-1912; Kolthoff, I.M., The Color Changes of Sulfonphthaleins, Benzeins and Phthaleins (1931) J. Phys. Chemi., 35, pp. 1433-1447; Whitehead, H.D., Waldman, J.V., Wirth, D.M., LeBlanc, G., 3D Printed UV-Visible Cuvette Adapter for Low-Cost and Versatile Spectroscopic Experiments (2017) Acs Omega, 2, pp. 6118-6122; Joshi301-Pangu, A., Lévesque, F., Roth, H.G., Oliver, S.F., Campeau, L.C., Nicewicz, D., DiRocco, D.A., Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis (2016) J. Org. Chem., 81, pp. 7244-7249; Wu, H., Hynes, J., Copper-Catalyzed Chlorination of Functionalized Arylboronic Acids (2010) Org. Lett., 12, pp. 1192-1195; Molander, G.A., Cavalcanti, L.N., Metal-Free Chlorodeboronation of Organotrifluoroborates (2011) J. Org. Chem., 76, pp. 7195-7203; Fischer, A., Seyan, S.S., Ipso nitration. XVIII. Nitration of 2-chloro-1,3,5-trimethylbenzene: Nitration ipso to chlorine (1978) Can. J. Chem., 56, pp. 1348-1357; Yonehara, K., Kamata, K., Yamaguchi, K., Mizuno, N., An efficient H2O2-based oxidative bromination of alkenes, alkynes, and aromatics by a divanadium-substituted phosphotungstate (2011) Chem.commun., 47, pp. 1692-1694; Maraš, N., Polanc, S., Kočevar, M., Microwave-assisted methylation of phenols with tetramethylammonium chloride in the presence of K2CO3 or Cs2CO3 (2008) Tetrahedron, 64, pp. 11618-11624; Shoji, K., Yasuhiro, U., Shizuo, F., Takaaki, K., Halogenation Using Quaternary Ammonium Polyhalides. XIX. Aromatic Chlorination of Arenes with Benzyltrimethylammonium Tetrachloroiodate (1989) Bull. Chem. Soc. Jpn., 62, pp. 2096-2098; Hubbard, A., Okazaki, T., Laali, K.K., Chlorination of Aromatics with Trichloroisocyanuric Acid (TCICA) in Bronsted-Acidic Imidazolium Ionic Liquid [BMIM(SO3H)][OTf]: An Economical, Green Protocol for the Synthesis of Chloroarenes (2007) Aust. J. Chem., 60, pp. 923-927; Himabindu, V., Parvathaneni, S.P., Rao, V.J., PhI(OAc)2/NaX-mediated halogenation providing access to valuable synthons 3-haloindole derivatives (2018) New J. Chem., 42, pp. 18889-18893; Lakshmi Reddy, V., Prathima, P.S., Rao, V.J., Bikshapathi, R., An efficient synthesis of versatile synthon 3-chlorooxindoles with NaCl/oxone (2018) New J. Chem., 42, pp. 20152-20155; Pu, X., Li, Q., Lu, Z., Yang, X., N-Chloro-N-methoxybenzenesulfonamide: A Chlorinating Reagent (2016) Eur. J. Org. Chem., 2016, pp. 5937-5940
PY - 2020/4/7
Y1 - 2020/4/7
N2 - Seven FDA-certified food dyes have been investigated as organocatalysts. As a result, Fast Green FCF and Brilliant Blue FCF have been discovered as catalysts for the chlorination of a wide range of arenes and heteroarenes in moderate to excellent yields and high regioselectivity. Mechanistic investigations of the separate systems indicate that different modes of activation are in operation, with Fast Green FCF being a light-promoted photoredox catalyst that is facilitating a one-electron oxidation of N-chlorosuccinimide (NCS) and Brilliant Blue FCF serving as a chlorine-transfer catalyst in its sulfonphthalein form with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) as stoichiometric chlorine source. Dearomatization of naphthol and indole substrates was observed in some examples using the Brilliant Blue/DCDMH system. Copyright © 2020 American Chemical Society.
AB - Seven FDA-certified food dyes have been investigated as organocatalysts. As a result, Fast Green FCF and Brilliant Blue FCF have been discovered as catalysts for the chlorination of a wide range of arenes and heteroarenes in moderate to excellent yields and high regioselectivity. Mechanistic investigations of the separate systems indicate that different modes of activation are in operation, with Fast Green FCF being a light-promoted photoredox catalyst that is facilitating a one-electron oxidation of N-chlorosuccinimide (NCS) and Brilliant Blue FCF serving as a chlorine-transfer catalyst in its sulfonphthalein form with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) as stoichiometric chlorine source. Dearomatization of naphthol and indole substrates was observed in some examples using the Brilliant Blue/DCDMH system. Copyright © 2020 American Chemical Society.
U2 - 10.1021/acsomega.0c00631
DO - 10.1021/acsomega.0c00631
M3 - Article
SN - 2470-1343
VL - 5
SP - 7693
EP - 7704
JO - ACS Omega
JF - ACS Omega
IS - 13
ER -