Understading black boxes: Knowledge induction from models

Jinhwa Kim, Jaekwon Bae, Dursun Delen

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

Due to regurations and laws prohibiting uses of private data on customers and their transactions in customer data base, most customer data sets are not easily accessable even in the same organizations. A solutio for this reguatory problems can be providing statistical summary of the data or models induced from the dat, instead of providing raw data sets. The models, however, have limited information on the original raw data set. This study explores possible solutions for these problems. The study uses prediction models from data on credit information of customers provided by a local bank in Seoul, S. Korea. This study suggests approaches in figuring what is inside of the non-rules based models such as regression models or neural network models. The study proposes several rule accumulation algorithms such as (RAA) and a GA-based rule refinement algorithm (GA-RRA) as possible solutions for the problems. The experiments show the performance of the random dataset, RAA, elimination of redundant rules (ERR), and GA-RRA.

Original languageEnglish
StatePublished - 1 Dec 2011
Externally publishedYes
Event15th Pacific Asia Conference on Information Systems: Quality Research in Pacific, PACIS 2011 - Brisbane, QLD, Australia
Duration: 7 Jul 201111 Jul 2011

Conference

Conference15th Pacific Asia Conference on Information Systems: Quality Research in Pacific, PACIS 2011
Country/TerritoryAustralia
CityBrisbane, QLD
Period7/07/1111/07/11

Keywords

  • Ga-based rule refinement algorithm (GA-RRA)
  • Logistic regression model
  • Personal credit rating
  • Rule accumulation algorithm (RAA)

Fingerprint

Dive into the research topics of 'Understading black boxes: Knowledge induction from models'. Together they form a unique fingerprint.

Cite this