TY - JOUR
T1 - Transverse localization of the quinacrine binding site on the Torpedo acetylcholine receptor
AU - Arias, H. R.
AU - Valenzuela, C. F.
AU - Johnson, D. A.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1993/1/1
Y1 - 1993/1/1
N2 - We demonstrated previously that a phencyclidine-displaceable quinacrine binding site exists at the lipid-protein interface of the Torpedo acetylcholine receptor (AcChR) (Valenzuela, C. F., Kerr, J. A., and Johnson, D. A. (1992) J. Biol. Chem. 267, 8238-8244). In this manuscript, we assess (1) the transverse position of this site in the lipid bilayer by examining the ability of a series of paramagnetic n-doxyl stearates (n-SALs) and iodide to quench receptor-bound quinacrine and membrane-partitioned octadecyl rhodamine B (C18-Rho) fluorescence and (2) the stoichiometry of histrionicotoxin- or phencyclidine-displaceable quinacrine binding. Initial experiments established what fraction of the n-doxyl stearates partitioned into the membranes and that the n-doxyl stearates do not interfere with quinacrine binding to the receptor at the concentrations used in the quenching studies. The n-doxyl stearate quenching experiments indicated relatively small (<2) differences between the n-doxyl stearates to quench receptor-bound quinacrine fluorescence, with a rank order of 7-SAL ≥ 5-SAL > 12-SAL > 16-SAL. This contrasts with the n-doxyl stearate quenching of the membrane-partitioned C18-Rho which showed as much as an 8.6-fold difference between the various isomers with a rank order of quenching efficiencies of 5- SAL > 7-SAL > 12-SAL ≥ 16-SAL. Iodide quenching measurements indicated significant solute accessibility to membrane-partitioned C18-Rho but not to receptor-bound quinacrine. The ratios of the bimolecular quenching rate constants for free to bound quinacrine and for free rhodamine B to membrane- partitioned C18-Rho were 53.4 and 6.6, respectively. Direct titration of quinacrine into suspensions of a high concentration of AcChR-associated membranes yielded an upper limit to the binding stoichiometry of 1.4 HTX- or PCP-displaceable quinacrine binding sites/AcChR functional units. The results suggest that there is a single phencyclidine- or histrionicotoxin- displaceable quinacrine binding site located at or somewhat below the level of the C5-C7 in the phospholipid acyl chains at the lipid-protein interface.
AB - We demonstrated previously that a phencyclidine-displaceable quinacrine binding site exists at the lipid-protein interface of the Torpedo acetylcholine receptor (AcChR) (Valenzuela, C. F., Kerr, J. A., and Johnson, D. A. (1992) J. Biol. Chem. 267, 8238-8244). In this manuscript, we assess (1) the transverse position of this site in the lipid bilayer by examining the ability of a series of paramagnetic n-doxyl stearates (n-SALs) and iodide to quench receptor-bound quinacrine and membrane-partitioned octadecyl rhodamine B (C18-Rho) fluorescence and (2) the stoichiometry of histrionicotoxin- or phencyclidine-displaceable quinacrine binding. Initial experiments established what fraction of the n-doxyl stearates partitioned into the membranes and that the n-doxyl stearates do not interfere with quinacrine binding to the receptor at the concentrations used in the quenching studies. The n-doxyl stearate quenching experiments indicated relatively small (<2) differences between the n-doxyl stearates to quench receptor-bound quinacrine fluorescence, with a rank order of 7-SAL ≥ 5-SAL > 12-SAL > 16-SAL. This contrasts with the n-doxyl stearate quenching of the membrane-partitioned C18-Rho which showed as much as an 8.6-fold difference between the various isomers with a rank order of quenching efficiencies of 5- SAL > 7-SAL > 12-SAL ≥ 16-SAL. Iodide quenching measurements indicated significant solute accessibility to membrane-partitioned C18-Rho but not to receptor-bound quinacrine. The ratios of the bimolecular quenching rate constants for free to bound quinacrine and for free rhodamine B to membrane- partitioned C18-Rho were 53.4 and 6.6, respectively. Direct titration of quinacrine into suspensions of a high concentration of AcChR-associated membranes yielded an upper limit to the binding stoichiometry of 1.4 HTX- or PCP-displaceable quinacrine binding sites/AcChR functional units. The results suggest that there is a single phencyclidine- or histrionicotoxin- displaceable quinacrine binding site located at or somewhat below the level of the C5-C7 in the phospholipid acyl chains at the lipid-protein interface.
UR - http://www.scopus.com/inward/record.url?scp=0027413304&partnerID=8YFLogxK
M3 - Article
C2 - 8454605
AN - SCOPUS:0027413304
SN - 0021-9258
VL - 268
SP - 6348
EP - 6355
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 9
ER -