TY - JOUR
T1 - Transient Compound Treatment Induces a Multigenerational Reduction of Oxysterol-Binding Protein (OSBP) Levels and Prophylactic Antiviral Activity
AU - Roberts, Brett L.
AU - Severance, Zachary C.
AU - Bensen, Ryan C.
AU - Le, Anh T.
AU - Kothapalli, Naga Rama
AU - Nuñez, Juan I.
AU - Ma, Hongyan
AU - Wu, Si
AU - Standke, Shawna J.
AU - Yang, Zhibo
AU - Reddig, William J.
AU - Blewett, Earl L.
AU - Burgett, Anthony W.G.
N1 - Publisher Copyright:
Copyright © 2018 American Chemical Society.
PY - 2019/2/15
Y1 - 2019/2/15
N2 - Oxysterol-binding protein (OSBP) is a lipid transport and regulatory protein required for the replication of Enterovirus genus viruses, which includes many significant human pathogens. Short-term exposure (i.e., 1-6 h) to a low dose (i.e., 1 nM) of the natural product compound OSW-1 induces a reduction of cellular OSBP levels by ∼90% in multiple different cell lines with no measurable cytotoxicity, defect in cellular proliferation, or global proteome reduction. Interestingly, the reduction of OSBP levels persists multiple days after the low-dose, transient OSW-1 compound treatment is ended and the intracellular OSW-1 compound levels drop to undetectable levels. The reduction in OSBP levels is inherited in multiple generations of cells that are propagated after the OSW-1 compound treatment is stopped. The enduring multiday, multigenerational reduction of OSBP levels triggered by the OSW-1 compound is not due to proteasome degradation of OSBP or due to a reduction in OSBP mRNA levels. OSW-1 compound treatment induces transient autophagy in cells, but blocking autophagy does not rescue OSBP levels. Although the specific cellular mechanism of long-term OSBP repression is not yet identified, these results clearly show the existence of an OSBP specific cellular regulation process that is triggered upon treatment with an OSBP-binding compound. The stable reduction of OSBP levels upon short-term, transient OSW-1 compound treatment will be a powerful tool to understand OSBP regulation and cellular function. Additionally, the persistent reduction in OSBP levels triggered by the transient OSW-1 compound treatment substantially reduces viral replication in treated cells. Therefore, the long-term, compound-induced reduction of OSBP in cells presents a new route to broad spectrum anti-Enterovirus activity, including as a novel route to antiviral prophylactic treatment through small molecule targeting a human host protein.
AB - Oxysterol-binding protein (OSBP) is a lipid transport and regulatory protein required for the replication of Enterovirus genus viruses, which includes many significant human pathogens. Short-term exposure (i.e., 1-6 h) to a low dose (i.e., 1 nM) of the natural product compound OSW-1 induces a reduction of cellular OSBP levels by ∼90% in multiple different cell lines with no measurable cytotoxicity, defect in cellular proliferation, or global proteome reduction. Interestingly, the reduction of OSBP levels persists multiple days after the low-dose, transient OSW-1 compound treatment is ended and the intracellular OSW-1 compound levels drop to undetectable levels. The reduction in OSBP levels is inherited in multiple generations of cells that are propagated after the OSW-1 compound treatment is stopped. The enduring multiday, multigenerational reduction of OSBP levels triggered by the OSW-1 compound is not due to proteasome degradation of OSBP or due to a reduction in OSBP mRNA levels. OSW-1 compound treatment induces transient autophagy in cells, but blocking autophagy does not rescue OSBP levels. Although the specific cellular mechanism of long-term OSBP repression is not yet identified, these results clearly show the existence of an OSBP specific cellular regulation process that is triggered upon treatment with an OSBP-binding compound. The stable reduction of OSBP levels upon short-term, transient OSW-1 compound treatment will be a powerful tool to understand OSBP regulation and cellular function. Additionally, the persistent reduction in OSBP levels triggered by the transient OSW-1 compound treatment substantially reduces viral replication in treated cells. Therefore, the long-term, compound-induced reduction of OSBP in cells presents a new route to broad spectrum anti-Enterovirus activity, including as a novel route to antiviral prophylactic treatment through small molecule targeting a human host protein.
UR - http://www.scopus.com/inward/record.url?scp=85060038869&partnerID=8YFLogxK
U2 - 10.1021/acschembio.8b00984
DO - 10.1021/acschembio.8b00984
M3 - Article
C2 - 30576108
AN - SCOPUS:85060038869
SN - 1554-8929
VL - 14
SP - 276
EP - 287
JO - ACS Chemical Biology
JF - ACS Chemical Biology
IS - 2
ER -