TY - JOUR
T1 - Separation of rat epidermis and dermis with thermolysin to detect site-specific inflammatory mrna and protein
AU - Gujar, Vikramsingh
AU - Anderson, Michael B.
AU - Miller, Kenneth E.
AU - Pande, Radhika D.
AU - Nawani, Pranav
AU - Das, Subhas
N1 - Funding Information:
for this research was provided by National Institutes of Health NIH-AR047410 (KEM).
Funding Information:
Funding for this research was provided by National Institutes
Publisher Copyright:
© 2021, Journal of Visualized Experiments. All rights reserved.
PY - 2021/9
Y1 - 2021/9
N2 - Easy-to-use and inexpensive techniques are needed to determine the site-specific production of inflammatory mediators and neurotrophins during skin injury, inflammation, and/or sensitization. The goal of this study is to describe an epidermal-dermal separation protocol using thermolysin, a proteinase that is active at 4 °C. To illustrate this procedure, Sprague Dawley rats are anesthetized, and right hind paws are injected with carrageenan. Six and twelve hours after injection, rats with inflammation and naïve rats are euthanized, and a piece of hind paw, glabrous skin is placed in cold Dulbecco's Modified Eagle Medium. The epidermis is then separated at the basement membrane from the dermis by thermolysin in PBS with calcium chloride. Next, the dermis is secured by microdissection forceps, and the epidermis is gently teased away. Toluidine blue staining of tissue sections show that the epidermis is separated cleanly from the dermis at the basement membrane. All keratinocyte cell layers remain intact, and the epidermal rete ridges along with indentations from dermal papillae are clearly observed. Qualitative and real-time RT-PCR is used to determine nerve growth factor and interleukin-6 expression levels. Western blotting and immunohistochemistry are finally performed to detect amounts of nerve growth factor. This report illustrates that cold thermolysin digestion is an effective method to separate epidermis from dermis for evaluation of mRNA and protein alterations during inflammation.
AB - Easy-to-use and inexpensive techniques are needed to determine the site-specific production of inflammatory mediators and neurotrophins during skin injury, inflammation, and/or sensitization. The goal of this study is to describe an epidermal-dermal separation protocol using thermolysin, a proteinase that is active at 4 °C. To illustrate this procedure, Sprague Dawley rats are anesthetized, and right hind paws are injected with carrageenan. Six and twelve hours after injection, rats with inflammation and naïve rats are euthanized, and a piece of hind paw, glabrous skin is placed in cold Dulbecco's Modified Eagle Medium. The epidermis is then separated at the basement membrane from the dermis by thermolysin in PBS with calcium chloride. Next, the dermis is secured by microdissection forceps, and the epidermis is gently teased away. Toluidine blue staining of tissue sections show that the epidermis is separated cleanly from the dermis at the basement membrane. All keratinocyte cell layers remain intact, and the epidermal rete ridges along with indentations from dermal papillae are clearly observed. Qualitative and real-time RT-PCR is used to determine nerve growth factor and interleukin-6 expression levels. Western blotting and immunohistochemistry are finally performed to detect amounts of nerve growth factor. This report illustrates that cold thermolysin digestion is an effective method to separate epidermis from dermis for evaluation of mRNA and protein alterations during inflammation.
UR - http://www.scopus.com/inward/record.url?scp=85118660353&partnerID=8YFLogxK
U2 - 10.3791/59708
DO - 10.3791/59708
M3 - Article
C2 - 34661580
AN - SCOPUS:85118660353
SN - 1940-087X
VL - 2021
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 175
M1 - e59708
ER -