Increased extracellular glutamate evoked by 1-Methyl-4-phenylpyridinium (MPP+) in the rat striatum is not essential for dopaminergic neurotoxicity and is not derived from released glutathione

Steven B. Foster, Haiwang Tang, Kenneth Miller, Glenn Dryhurst

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

A number of studies have implicated the interactions of the excitatory amino acid L-glutamate (Glu) with its ionotropic and metabotropic receptors as important components of the mechanism underlying the dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+). Furthermore, microdi-alysis experiments have demonstrated that perfusion of relatively high concentrations of MPP+ into the rat striatum evoke a delayed, massive release of Glu. Interestingly, perfusion of MPP+ also mediates a similar release of glutathione (GSH). Together, these observations raise the possibility that the rise of extracellular Glu mediated by MPP+ may be the result of hydrolysis of released GSH by γ-glutamyl transpeptidase (γ-GT). In the present investigation it is demonstrated that perfusions of solutions of 0.7 and 1.3 mM MPP+ dissolved in artificial cerebro-spinal fluid into the rat striatum evoke neurotoxic damage to dopaminergic terminals, assessed by both a two-day test/challenge procedure and tyro-sine hydroxylase immunoreactivity, but without the release of Glu. Perfusions of ≥ 2.5 mM MPP+ cause more extensive dopaminergic neurotoxicity and a dose-dependent release of Glu. However, neither this release of Glu nor MPP+-induced dopaminergic neurotoxicity are blocked by the irreversible γ-GT inhibitor acivicin. Together, these observations indicate that a rise of extracellular levels of Glu is not essential for the dopaminergic neurotoxicity of MPP+. Furthermore, the rise of extracellular Glu caused by perfusion of ≥2.5 mM MPP+ is not the result of the γ-GT-mediated hydrolysis of released GSH. It is possible that the rise of extracellular levels of Glu, L-aspartate, L-glycine and L-taurine evoked by perfusions of ≥2.5 mM MPP+ into the rat striatum may reflect, at least in part, the release of these amino acids from astrocytes.

Original languageEnglish
Pages (from-to)251-263
Number of pages13
JournalNeurotoxicity Research
Volume7
Issue number4
DOIs
StatePublished - 1 Dec 2005

Fingerprint

1-Methyl-4-phenylpyridinium
Glutathione
Rats
Glutamic Acid
Perfusion
acivicin
Hydrolysis
Excitatory Amino Acids
gamma-Glutamyltransferase
Taurine
Mixed Function Oxygenases
Aspartic Acid
Astrocytes
Glycine
Cerebrospinal Fluid
Amino Acids

Keywords

  • Dopamine
  • Glutamate
  • Glutathione
  • MPTP MPP
  • Microdialysis
  • Neurotoxicity

Cite this

@article{b86d4449063c4b759705ce2068cdfeb6,
title = "Increased extracellular glutamate evoked by 1-Methyl-4-phenylpyridinium (MPP+) in the rat striatum is not essential for dopaminergic neurotoxicity and is not derived from released glutathione",
abstract = "A number of studies have implicated the interactions of the excitatory amino acid L-glutamate (Glu) with its ionotropic and metabotropic receptors as important components of the mechanism underlying the dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+). Furthermore, microdi-alysis experiments have demonstrated that perfusion of relatively high concentrations of MPP+ into the rat striatum evoke a delayed, massive release of Glu. Interestingly, perfusion of MPP+ also mediates a similar release of glutathione (GSH). Together, these observations raise the possibility that the rise of extracellular Glu mediated by MPP+ may be the result of hydrolysis of released GSH by γ-glutamyl transpeptidase (γ-GT). In the present investigation it is demonstrated that perfusions of solutions of 0.7 and 1.3 mM MPP+ dissolved in artificial cerebro-spinal fluid into the rat striatum evoke neurotoxic damage to dopaminergic terminals, assessed by both a two-day test/challenge procedure and tyro-sine hydroxylase immunoreactivity, but without the release of Glu. Perfusions of ≥ 2.5 mM MPP+ cause more extensive dopaminergic neurotoxicity and a dose-dependent release of Glu. However, neither this release of Glu nor MPP+-induced dopaminergic neurotoxicity are blocked by the irreversible γ-GT inhibitor acivicin. Together, these observations indicate that a rise of extracellular levels of Glu is not essential for the dopaminergic neurotoxicity of MPP+. Furthermore, the rise of extracellular Glu caused by perfusion of ≥2.5 mM MPP+ is not the result of the γ-GT-mediated hydrolysis of released GSH. It is possible that the rise of extracellular levels of Glu, L-aspartate, L-glycine and L-taurine evoked by perfusions of ≥2.5 mM MPP+ into the rat striatum may reflect, at least in part, the release of these amino acids from astrocytes.",
keywords = "Dopamine, Glutamate, Glutathione, MPTP MPP, Microdialysis, Neurotoxicity",
author = "Foster, {Steven B.} and Haiwang Tang and Kenneth Miller and Glenn Dryhurst",
year = "2005",
month = "12",
day = "1",
doi = "10.1007/BF03033883",
language = "English",
volume = "7",
pages = "251--263",
journal = "Neurotoxicity Research",
issn = "1029-8428",
publisher = "Springer New York",
number = "4",

}

TY - JOUR

T1 - Increased extracellular glutamate evoked by 1-Methyl-4-phenylpyridinium (MPP+) in the rat striatum is not essential for dopaminergic neurotoxicity and is not derived from released glutathione

AU - Foster, Steven B.

AU - Tang, Haiwang

AU - Miller, Kenneth

AU - Dryhurst, Glenn

PY - 2005/12/1

Y1 - 2005/12/1

N2 - A number of studies have implicated the interactions of the excitatory amino acid L-glutamate (Glu) with its ionotropic and metabotropic receptors as important components of the mechanism underlying the dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+). Furthermore, microdi-alysis experiments have demonstrated that perfusion of relatively high concentrations of MPP+ into the rat striatum evoke a delayed, massive release of Glu. Interestingly, perfusion of MPP+ also mediates a similar release of glutathione (GSH). Together, these observations raise the possibility that the rise of extracellular Glu mediated by MPP+ may be the result of hydrolysis of released GSH by γ-glutamyl transpeptidase (γ-GT). In the present investigation it is demonstrated that perfusions of solutions of 0.7 and 1.3 mM MPP+ dissolved in artificial cerebro-spinal fluid into the rat striatum evoke neurotoxic damage to dopaminergic terminals, assessed by both a two-day test/challenge procedure and tyro-sine hydroxylase immunoreactivity, but without the release of Glu. Perfusions of ≥ 2.5 mM MPP+ cause more extensive dopaminergic neurotoxicity and a dose-dependent release of Glu. However, neither this release of Glu nor MPP+-induced dopaminergic neurotoxicity are blocked by the irreversible γ-GT inhibitor acivicin. Together, these observations indicate that a rise of extracellular levels of Glu is not essential for the dopaminergic neurotoxicity of MPP+. Furthermore, the rise of extracellular Glu caused by perfusion of ≥2.5 mM MPP+ is not the result of the γ-GT-mediated hydrolysis of released GSH. It is possible that the rise of extracellular levels of Glu, L-aspartate, L-glycine and L-taurine evoked by perfusions of ≥2.5 mM MPP+ into the rat striatum may reflect, at least in part, the release of these amino acids from astrocytes.

AB - A number of studies have implicated the interactions of the excitatory amino acid L-glutamate (Glu) with its ionotropic and metabotropic receptors as important components of the mechanism underlying the dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+). Furthermore, microdi-alysis experiments have demonstrated that perfusion of relatively high concentrations of MPP+ into the rat striatum evoke a delayed, massive release of Glu. Interestingly, perfusion of MPP+ also mediates a similar release of glutathione (GSH). Together, these observations raise the possibility that the rise of extracellular Glu mediated by MPP+ may be the result of hydrolysis of released GSH by γ-glutamyl transpeptidase (γ-GT). In the present investigation it is demonstrated that perfusions of solutions of 0.7 and 1.3 mM MPP+ dissolved in artificial cerebro-spinal fluid into the rat striatum evoke neurotoxic damage to dopaminergic terminals, assessed by both a two-day test/challenge procedure and tyro-sine hydroxylase immunoreactivity, but without the release of Glu. Perfusions of ≥ 2.5 mM MPP+ cause more extensive dopaminergic neurotoxicity and a dose-dependent release of Glu. However, neither this release of Glu nor MPP+-induced dopaminergic neurotoxicity are blocked by the irreversible γ-GT inhibitor acivicin. Together, these observations indicate that a rise of extracellular levels of Glu is not essential for the dopaminergic neurotoxicity of MPP+. Furthermore, the rise of extracellular Glu caused by perfusion of ≥2.5 mM MPP+ is not the result of the γ-GT-mediated hydrolysis of released GSH. It is possible that the rise of extracellular levels of Glu, L-aspartate, L-glycine and L-taurine evoked by perfusions of ≥2.5 mM MPP+ into the rat striatum may reflect, at least in part, the release of these amino acids from astrocytes.

KW - Dopamine

KW - Glutamate

KW - Glutathione

KW - MPTP MPP

KW - Microdialysis

KW - Neurotoxicity

UR - http://www.scopus.com/inward/record.url?scp=27744504124&partnerID=8YFLogxK

U2 - 10.1007/BF03033883

DO - 10.1007/BF03033883

M3 - Article

C2 - 16179262

AN - SCOPUS:27744504124

VL - 7

SP - 251

EP - 263

JO - Neurotoxicity Research

JF - Neurotoxicity Research

SN - 1029-8428

IS - 4

ER -