Fecal microbiota in the female prairie vole (Microtus ochrogaster)

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We examined the fecal microbiota of female prairie voles. This species is socially and, likely, sexually monogamous, and thus serves as a valuable model in which to examine the interaction between the microbiota-gut-brain axis and social behavior. At present, little is known about the gastrointestinal microbiota of prairie voles; therefore, we performed a first characterization of the fecal microbiota using 16S rRNA gene amplicon sequencing. Semiconductor sequencing technology on an Ion Torrent PGM platform was used to assess the composition of fecal microbiotas from twelve female prairie voles. Following quality filtering, 1,017,756 sequencing reads were classified from phylum to genus level. At the phylum level, Firmicutes, Bacteroidetes, and Saccharibacteria were the predominant taxa, while the Bacteriodales, Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae contributed the most dominant microbial groups and genera. Microbial community membership was most similar between vole sibling pairs, but consideration of taxon abundances weakened these associations. The interdependence of host factors such as genetics and behavior with the gastrointestinal microbiota is likely to be particularly pronounced in prairie voles. Our pilot characterization of the prairie vole intestinal microbiota revealed a microbial community composition remarkably consistent with the monogastric alimentary system of these rodents and their diet rich in complex plant carbohydrates. The highly social nature of these animals poses specific challenges to microbiome analyses that nonetheless are valuable for advancing research on the microbiota-gut-brain-behavior axis. Our study provides an important basis for future microbiome research in this emerging model organism for studying social behavior.

Original languageEnglish
Article numbere0190648
JournalPLoS ONE
Volume13
Issue number3
DOIs
StatePublished - Mar 2018

Fingerprint

Microtus ochrogaster
Arvicolinae
Microbiota
Brain
Nutrition
Chemical analysis
intestinal microorganisms
Animals
Genes
Social Behavior
Carbohydrates
Ions
Semiconductor materials
social behavior
microbial communities
Bacteroidetes
Digestive System
feces composition
Semiconductors
semiconductors

Cite this

@article{8c8f16e3b905482fad4ae73dd8c946ac,
title = "Fecal microbiota in the female prairie vole (Microtus ochrogaster)",
abstract = "We examined the fecal microbiota of female prairie voles. This species is socially and, likely, sexually monogamous, and thus serves as a valuable model in which to examine the interaction between the microbiota-gut-brain axis and social behavior. At present, little is known about the gastrointestinal microbiota of prairie voles; therefore, we performed a first characterization of the fecal microbiota using 16S rRNA gene amplicon sequencing. Semiconductor sequencing technology on an Ion Torrent PGM platform was used to assess the composition of fecal microbiotas from twelve female prairie voles. Following quality filtering, 1,017,756 sequencing reads were classified from phylum to genus level. At the phylum level, Firmicutes, Bacteroidetes, and Saccharibacteria were the predominant taxa, while the Bacteriodales, Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae contributed the most dominant microbial groups and genera. Microbial community membership was most similar between vole sibling pairs, but consideration of taxon abundances weakened these associations. The interdependence of host factors such as genetics and behavior with the gastrointestinal microbiota is likely to be particularly pronounced in prairie voles. Our pilot characterization of the prairie vole intestinal microbiota revealed a microbial community composition remarkably consistent with the monogastric alimentary system of these rodents and their diet rich in complex plant carbohydrates. The highly social nature of these animals poses specific challenges to microbiome analyses that nonetheless are valuable for advancing research on the microbiota-gut-brain-behavior axis. Our study provides an important basis for future microbiome research in this emerging model organism for studying social behavior.",
author = "Curtis, {J. Thomas} and Senait Assefa and Amie Francis and K{\"o}hler, {Gerwald A.}",
year = "2018",
month = "3",
doi = "10.1371/journal.pone.0190648",
language = "English",
volume = "13",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

Fecal microbiota in the female prairie vole (Microtus ochrogaster). / Curtis, J. Thomas; Assefa, Senait; Francis, Amie; Köhler, Gerwald A.

In: PLoS ONE, Vol. 13, No. 3, e0190648, 03.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Fecal microbiota in the female prairie vole (Microtus ochrogaster)

AU - Curtis, J. Thomas

AU - Assefa, Senait

AU - Francis, Amie

AU - Köhler, Gerwald A.

PY - 2018/3

Y1 - 2018/3

N2 - We examined the fecal microbiota of female prairie voles. This species is socially and, likely, sexually monogamous, and thus serves as a valuable model in which to examine the interaction between the microbiota-gut-brain axis and social behavior. At present, little is known about the gastrointestinal microbiota of prairie voles; therefore, we performed a first characterization of the fecal microbiota using 16S rRNA gene amplicon sequencing. Semiconductor sequencing technology on an Ion Torrent PGM platform was used to assess the composition of fecal microbiotas from twelve female prairie voles. Following quality filtering, 1,017,756 sequencing reads were classified from phylum to genus level. At the phylum level, Firmicutes, Bacteroidetes, and Saccharibacteria were the predominant taxa, while the Bacteriodales, Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae contributed the most dominant microbial groups and genera. Microbial community membership was most similar between vole sibling pairs, but consideration of taxon abundances weakened these associations. The interdependence of host factors such as genetics and behavior with the gastrointestinal microbiota is likely to be particularly pronounced in prairie voles. Our pilot characterization of the prairie vole intestinal microbiota revealed a microbial community composition remarkably consistent with the monogastric alimentary system of these rodents and their diet rich in complex plant carbohydrates. The highly social nature of these animals poses specific challenges to microbiome analyses that nonetheless are valuable for advancing research on the microbiota-gut-brain-behavior axis. Our study provides an important basis for future microbiome research in this emerging model organism for studying social behavior.

AB - We examined the fecal microbiota of female prairie voles. This species is socially and, likely, sexually monogamous, and thus serves as a valuable model in which to examine the interaction between the microbiota-gut-brain axis and social behavior. At present, little is known about the gastrointestinal microbiota of prairie voles; therefore, we performed a first characterization of the fecal microbiota using 16S rRNA gene amplicon sequencing. Semiconductor sequencing technology on an Ion Torrent PGM platform was used to assess the composition of fecal microbiotas from twelve female prairie voles. Following quality filtering, 1,017,756 sequencing reads were classified from phylum to genus level. At the phylum level, Firmicutes, Bacteroidetes, and Saccharibacteria were the predominant taxa, while the Bacteriodales, Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae contributed the most dominant microbial groups and genera. Microbial community membership was most similar between vole sibling pairs, but consideration of taxon abundances weakened these associations. The interdependence of host factors such as genetics and behavior with the gastrointestinal microbiota is likely to be particularly pronounced in prairie voles. Our pilot characterization of the prairie vole intestinal microbiota revealed a microbial community composition remarkably consistent with the monogastric alimentary system of these rodents and their diet rich in complex plant carbohydrates. The highly social nature of these animals poses specific challenges to microbiome analyses that nonetheless are valuable for advancing research on the microbiota-gut-brain-behavior axis. Our study provides an important basis for future microbiome research in this emerging model organism for studying social behavior.

UR - http://www.scopus.com/inward/record.url?scp=85044527822&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0190648

DO - 10.1371/journal.pone.0190648

M3 - Article

C2 - 29579049

AN - SCOPUS:85044527822

VL - 13

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 3

M1 - e0190648

ER -