Erythropoiesis in women during 11 days at 4,300 m is not affected by menstrual cycle phase

John T. Reeves, Stacy Zamudio, Thomas E. Dahms, Ingrid Asmus, Barry Braun, Gail E. Butterfield, Rosann G. McCullough, Stephen R. Muza, Paul B. Rock, Lorna G. Moore

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Because the ovarian steroid hormones, progesterone and estrogen, have higher blood levels in the luteal (L) than in the follicular (F) phase of the menstrual cycle, and because of their known effects on ventilation and hematopoiesis, we hypothesized that less hypoxemia and less erythropoiesis would occur in the L than the F phase of the cycle after arrival at altitude. We examined erythropoiesis with menstrual cycle phase in 16 women (age 22.6 ± 0.6 yr). At sea level, 11 of 16 women were studied during both menstrual cycle phases, and, where comparison within women was available, cycle phase did not alter erythropoietin (n = 5), reticulocyte count (n = 10), and red cell volume (n = 9). When all 16 women were taken for 11 days to 4,300-m altitude (barometric pressure = 462 mmHg), paired comparisons within women showed no differences in ovarian hormone concentrations at sea level vs. altitude on menstrual cycle day 3 or 10 for either the F (n = 11) or the L (n = 5) phase groups. Arterial oxygen saturation did not differ between the F and L groups at altitude. There were no differences by cycle phase on day 11 at 4,300 m for erythropoietin [22.9 ± 4.7 (L) vs. 18.8 ± 3.4 mU/ml (F)], percent reticulocytes [1.9 ± 0.1 (L) vs. 2.1 ± 0.3% (F)], hemoglobin [13.5 ± 0.3 (L) vs. 13.7 ± 0.3 g/100 ml (F)], percent hematocrit [40.6 ± 1.4 (L) vs. 40.7 ± 1.0% (F)], red cell volume [31.1 ± 3.6 (L) vs. 33.0 ± 1.6 ml/kg (F)], and blood ferritin [8.9 ± 1.7 (L) vs. 10.2 ± 0.9 μg/l (F)]. Blood level of erythropoietin was related (r = 0.77) to arterial oxygen saturation but not to the levels of progesterone or estradiol. We conclude that erythropoiesis was not altered by menstrual cycle phase during the first days at 4,300-m altitude.

Original languageEnglish
Pages (from-to)2579-2586
Number of pages8
JournalJournal of Applied Physiology
Volume91
Issue number6
DOIs
StatePublished - 2001

Keywords

  • Erythropoietin
  • Ferritin
  • Red cell volume
  • Reticulocytes

Fingerprint

Dive into the research topics of 'Erythropoiesis in women during 11 days at 4,300 m is not affected by menstrual cycle phase'. Together they form a unique fingerprint.

Cite this