Construction of herpes simplex viruses that are pseudodiploid for the glycoprotein B gene: A strategy for studying the function of an essential herpesvirus gene

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

The primary structure of glycoprotein B (gB) is conserved strongly among many members of the Herpesviridae, including some that differ vastly in their natural properties. To determine whether the structural similarity between the gBs of herpes simplex virus type 1 (HSV-1) and bovine herpesvirus type 1 (BHV-1) was reflected in functional homology, we constructed pseudodiploid HSV-1 virions which, in addition to their own gene encoding gB, also contained a gene for encoding BHV-1 gB. Two kinds of pseudodiploid viruses were constructed. In one, the coding sequences of the BHV-1 gB gene were linked to the 5' flanking sequences of the HSV-1 thymidine kinase (TR) gene. In the other, the entire BHV-1 gB gene, including its own flanking sequences, was introduced into the TK gene. In cells infected with the viruses both HSV-1 and BHV-1 gB were made but they could be distinguished immunologically by monoclonal antibodies. Both glycoproteins were inserted into cellular and virion membranes but did not form oligomers with each other. A monoclonal antibody that binds to HSV-1 gB but not BHV-1 gB neutralized the parental HSV-1 and a revertant pseudodiploid virus from which the gene encoding BHV-1 gB had been excised, but was significantly less efficient at neutralizing the pseudodiploid viruses. This suggests that the BHV-1 homologue can complement the HSV-1 gB functions required for infectivity.

Original languageEnglish
Pages (from-to)385-392
Number of pages8
JournalJournal of General Virology
Volume72
Issue number2
DOIs
StatePublished - 1 Jan 1991

Fingerprint

Herpesviridae
Essential Genes
Human Herpesvirus 1
Simplexvirus
Glycoproteins
Genes
Bovine Herpesvirus 1
Viruses
Virion
Monoclonal Antibodies
Thymidine Kinase
5' Flanking Region
bovine herpesvirus type-1 glycoproteins
Membranes

Cite this

@article{35a13dc786cf4607b2ec6f51c84fba52,
title = "Construction of herpes simplex viruses that are pseudodiploid for the glycoprotein B gene: A strategy for studying the function of an essential herpesvirus gene",
abstract = "The primary structure of glycoprotein B (gB) is conserved strongly among many members of the Herpesviridae, including some that differ vastly in their natural properties. To determine whether the structural similarity between the gBs of herpes simplex virus type 1 (HSV-1) and bovine herpesvirus type 1 (BHV-1) was reflected in functional homology, we constructed pseudodiploid HSV-1 virions which, in addition to their own gene encoding gB, also contained a gene for encoding BHV-1 gB. Two kinds of pseudodiploid viruses were constructed. In one, the coding sequences of the BHV-1 gB gene were linked to the 5' flanking sequences of the HSV-1 thymidine kinase (TR) gene. In the other, the entire BHV-1 gB gene, including its own flanking sequences, was introduced into the TK gene. In cells infected with the viruses both HSV-1 and BHV-1 gB were made but they could be distinguished immunologically by monoclonal antibodies. Both glycoproteins were inserted into cellular and virion membranes but did not form oligomers with each other. A monoclonal antibody that binds to HSV-1 gB but not BHV-1 gB neutralized the parental HSV-1 and a revertant pseudodiploid virus from which the gene encoding BHV-1 gB had been excised, but was significantly less efficient at neutralizing the pseudodiploid viruses. This suggests that the BHV-1 homologue can complement the HSV-1 gB functions required for infectivity.",
author = "V. Misra and {Linwood Blewett}, E.",
year = "1991",
month = "1",
day = "1",
doi = "10.1099/0022-1317-72-2-385",
language = "English",
volume = "72",
pages = "385--392",
journal = "Journal of General Virology",
issn = "0022-1317",
publisher = "Society for General Microbiology",
number = "2",

}

TY - JOUR

T1 - Construction of herpes simplex viruses that are pseudodiploid for the glycoprotein B gene

T2 - A strategy for studying the function of an essential herpesvirus gene

AU - Misra, V.

AU - Linwood Blewett, E.

PY - 1991/1/1

Y1 - 1991/1/1

N2 - The primary structure of glycoprotein B (gB) is conserved strongly among many members of the Herpesviridae, including some that differ vastly in their natural properties. To determine whether the structural similarity between the gBs of herpes simplex virus type 1 (HSV-1) and bovine herpesvirus type 1 (BHV-1) was reflected in functional homology, we constructed pseudodiploid HSV-1 virions which, in addition to their own gene encoding gB, also contained a gene for encoding BHV-1 gB. Two kinds of pseudodiploid viruses were constructed. In one, the coding sequences of the BHV-1 gB gene were linked to the 5' flanking sequences of the HSV-1 thymidine kinase (TR) gene. In the other, the entire BHV-1 gB gene, including its own flanking sequences, was introduced into the TK gene. In cells infected with the viruses both HSV-1 and BHV-1 gB were made but they could be distinguished immunologically by monoclonal antibodies. Both glycoproteins were inserted into cellular and virion membranes but did not form oligomers with each other. A monoclonal antibody that binds to HSV-1 gB but not BHV-1 gB neutralized the parental HSV-1 and a revertant pseudodiploid virus from which the gene encoding BHV-1 gB had been excised, but was significantly less efficient at neutralizing the pseudodiploid viruses. This suggests that the BHV-1 homologue can complement the HSV-1 gB functions required for infectivity.

AB - The primary structure of glycoprotein B (gB) is conserved strongly among many members of the Herpesviridae, including some that differ vastly in their natural properties. To determine whether the structural similarity between the gBs of herpes simplex virus type 1 (HSV-1) and bovine herpesvirus type 1 (BHV-1) was reflected in functional homology, we constructed pseudodiploid HSV-1 virions which, in addition to their own gene encoding gB, also contained a gene for encoding BHV-1 gB. Two kinds of pseudodiploid viruses were constructed. In one, the coding sequences of the BHV-1 gB gene were linked to the 5' flanking sequences of the HSV-1 thymidine kinase (TR) gene. In the other, the entire BHV-1 gB gene, including its own flanking sequences, was introduced into the TK gene. In cells infected with the viruses both HSV-1 and BHV-1 gB were made but they could be distinguished immunologically by monoclonal antibodies. Both glycoproteins were inserted into cellular and virion membranes but did not form oligomers with each other. A monoclonal antibody that binds to HSV-1 gB but not BHV-1 gB neutralized the parental HSV-1 and a revertant pseudodiploid virus from which the gene encoding BHV-1 gB had been excised, but was significantly less efficient at neutralizing the pseudodiploid viruses. This suggests that the BHV-1 homologue can complement the HSV-1 gB functions required for infectivity.

UR - http://www.scopus.com/inward/record.url?scp=0026030070&partnerID=8YFLogxK

U2 - 10.1099/0022-1317-72-2-385

DO - 10.1099/0022-1317-72-2-385

M3 - Article

C2 - 1847175

AN - SCOPUS:0026030070

VL - 72

SP - 385

EP - 392

JO - Journal of General Virology

JF - Journal of General Virology

SN - 0022-1317

IS - 2

ER -