Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4,300-m altitude

C. S. Fulco, K. W. Kambis, A. L. Friedlander, P. B. Rock, S. R. Muza, A. Cymerman

Research output: Contribution to journalArticle

40 Scopus citations

Abstract

Carbohydrate supplementation (CHOS) typically improves prolonged time-trial (TT) performance at sea level (SL). This study determined whether CHOS also improves TT performance at high altitude (ALT; 4,300 M) despite increased hypoxemia and while in negative energy balance (∼1,250 kcal/day). Two groups of fasting, fitness-matched men performed a 720-kJ cycle TT at SL and while living at ALT on days 3 (ALT3) and 10 (ALT10). Eight men drank a 10% carbohydrate solution (0.175 g/kg body wt) and eight drank a placebo (PLA; double blind) at the start of and every 15 min of the TT. Blood glucose during each TT was higher (P < 0.05) for CHOS than for PLA. At SL, TT duration (∼59 min) and watts (∼218 or ∼61% of peak watts; %SL Wpeak) were similar for both groups. At ALT, the TT was longer for both groups (P < 0.01) but was shorter for CHOS than for PLA on ALT3 (means ± SE: 80 ± 7 vs. 105 ± 9 min; P < 0.01) and ALT10 (77 ± 7 vs. 90 ± 5 min; P < 0.01). At ALT, %SL Wpeak was reduced (P < 0.01) with the reduction on ALT3 being larger for PLA (to 33 ± 3%) than for CHOS (to 43 ± 2%; P < 0.05). On ALT3, O2 saturation fell similarly from 84 ± 2% at rest to 73 ± 1% during the TT for both groups (P < 0.05), and on ALT10 O2 saturation fell more (P < 0.02) for CHOS (91 ± 1 to 76 ± 2%) than for PLA (90 ± 1 to 81 ± 1%). %SL Wpeak and O2 saturation were inversely related during the TT for both groups at ALT (r ≥ -0.76; P ≤ 0.03). It was concluded that, despite hypoxemia exacerbated by exercise, CHOS greatly improved TT performance at ALT in which there was a negative energy balance.

Original languageEnglish
Pages (from-to)867-876
Number of pages10
JournalJournal of Applied Physiology
Volume99
Issue number3
DOIs
StatePublished - 1 Sep 2005

    Fingerprint

Keywords

  • Endurance performance
  • Ergogenic
  • Glucose
  • Hypoxemia
  • Prolonged exercise

Cite this