TY - JOUR
T1 - Activation of the multiple drug resistance gene MDR1 in fluconazole- resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor
AU - Wirsching, Stephanie
AU - Michel, Sonja
AU - Köhler, Gerwald
AU - Morschhäuser, Joachim
PY - 2000/1
Y1 - 2000/1
N2 - Resistance of Candida albicans against the widely used antifungal agent fluconazole is often due to active drug efflux from the cells. In many fluconazole-resistant C. albicans isolates the reduced intracellular drug accumulation correlates with constitutive strong expression of the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily that is not detectably expressed in vitro in fluconazole-susceptible isolates. To elucidate the molecular changes responsible for MDR1 activation, two pairs of matched fluconazole-susceptible and resistant isolates in which drug resistance coincided with stable MDR1 activation were analyzed. Sequence analysis of the MDR1 regulatory region did not reveal any promoter mutations in the resistant isolates that might account for the altered expression of the gene. To test for a possible involvement of trans-regulatory factors, a GFP reporter gene was placed under the control of the MDR1 promoter from the fluconazole-susceptible C. albicans strain CAI4, which does not express the MDR1 gene in vitro. This MDR1P-GFP fusion was integrated into the genome of the clinical C. albicans isolates with the help of the dominant selection marker MPA(R) developed for the transformation of C. albicans wild-type strains. Integration was targeted to an ectopic locus such that no recombination between the heterologous and resident MDR1 promoters occurred. The transformants of the two resistant isolates exhibited a fluorescent phenotype, whereas transformants of the corresponding susceptible isolates did not express the GFP gene. These results demonstrate that the MDR1 promoter was activated by a trans-regulatory factor that was mutated in fluconazole-resistant isolates, resulting in deregulated, constitutive MDR1 expression.
AB - Resistance of Candida albicans against the widely used antifungal agent fluconazole is often due to active drug efflux from the cells. In many fluconazole-resistant C. albicans isolates the reduced intracellular drug accumulation correlates with constitutive strong expression of the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily that is not detectably expressed in vitro in fluconazole-susceptible isolates. To elucidate the molecular changes responsible for MDR1 activation, two pairs of matched fluconazole-susceptible and resistant isolates in which drug resistance coincided with stable MDR1 activation were analyzed. Sequence analysis of the MDR1 regulatory region did not reveal any promoter mutations in the resistant isolates that might account for the altered expression of the gene. To test for a possible involvement of trans-regulatory factors, a GFP reporter gene was placed under the control of the MDR1 promoter from the fluconazole-susceptible C. albicans strain CAI4, which does not express the MDR1 gene in vitro. This MDR1P-GFP fusion was integrated into the genome of the clinical C. albicans isolates with the help of the dominant selection marker MPA(R) developed for the transformation of C. albicans wild-type strains. Integration was targeted to an ectopic locus such that no recombination between the heterologous and resident MDR1 promoters occurred. The transformants of the two resistant isolates exhibited a fluorescent phenotype, whereas transformants of the corresponding susceptible isolates did not express the GFP gene. These results demonstrate that the MDR1 promoter was activated by a trans-regulatory factor that was mutated in fluconazole-resistant isolates, resulting in deregulated, constitutive MDR1 expression.
UR - http://www.scopus.com/inward/record.url?scp=0033989179&partnerID=8YFLogxK
U2 - 10.1128/JB.182.2.400-404.2000
DO - 10.1128/JB.182.2.400-404.2000
M3 - Article
C2 - 10629186
AN - SCOPUS:0033989179
SN - 0021-9193
VL - 182
SP - 400
EP - 404
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 2
ER -